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Abstract 

Competitive self-organizing and self learning neural 
networks, also known as self-organizing feature maps (SOFM), 
represent one of the most interesting types of the artificial neural 
networks (ANN). This paper presents the successful 
implementation of some simple competitive neural networks 
with neuron parallelism used in model classification tasks in 
field programmable gate arrays (FPGA). The network design 
was carried out using the System Generator software, which is 
also used to generate the VHDL code for the network. Xilinx ISE 
8.2i was used for synthesis and implementation. 

1. INTRODUCTION 

A competitive ANN with neuron parallelism consists of a 
control block, an input layer and an output layer. The output 
layer consists of a number of neurons equal to the number of 
classes in which we would like to classify and an activation 
function calculus block, common to all the neurons. The 
neuron consists of a weights memory specific to each neuron 
and a calculus block used to calculate the simplified Euclidian 
distance. The following figure presents a competitive ANN 
with neuron parallelism, having the same parameters as the 
ANN implemented with the layer parallelism. (7 neurons in 
the input layer and 15 neurons in the output layer).
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Fig. 1 The hardware model of the competitive ANN with neuron parallelism 



2. IMPLEMENTING A COMPETITIVE ANN WITH LAYER 

PARALLELISM 

The changes in the structure of the ANN in order to 
implement the neuron parallelism will be presented next. The 
command signals are being generated by the command block 
that has to be adapted function of the number of neurons. This 
block generates the address where the input vector will be 
entered into the input layer,  the block being designed in the 
form of a dual port memory. The command block generates 
the address  

 

 

form which the date of the input layer are read, data used 
afterwards also by the weight memories from within the 
structure of each neuron. It also generates reset signals and 
the selection signal for the multiplexer. Adapting the 
command block is easy because the parameters regarding the 
number of neurons, the numbers of operations during an input 
signal sample, the delays, etc., are being automatically loaded 
from the Matlab IDE. The signals generated by the command 
block are presented in figure 2. 

 

   
  

 

Fig. 2 The signals generated by the command block Fig. 3 Input layer wave forms 

 

The input layer has the same structure as in the case of the 
ANN with layer parallelism, the only difference being the 
frequency with which data is being entered and read. Fig. 3 
present the waveforms corresponding to the input layer. 

A neuron contains, besides the block that calculates the 
Euclidian distance, a weights memory, as presented in the 
next figure: 

 

  
a) Block diagram b) The structure based on Xilinx blocks 

 
Fig. 4 The neuron within the structure of a competitive ANN with neuron parallelism 

 
In Fig. 4.b the structure of a neuron created using Xilinx 

blocks is being presented. The AddSub block calculates the 
differences between the data and the weights, while the 
multiplication block calculates the square of these differences, 



the accumulator block sums up the squares of the differences, 
the results being stored temporally in the output register. 

In order to calculate the smallest value and determine the 
neuron which has the minimal output, a block that calculates 
the competitive function activation has been implemented, 
block similar to the one in Fig. 6.6. Because there is only one 

such block, the neuron outputs are fed in sequence to its input 
by the means of a 15 input multiplexer. The selection signal 
for the multiplexer is generated by the command block. 

A detailed view with the waveforms corresponding to the 
first three test vectors for the competitive ANN with neuron 
parallelism are presented in Fig. 5. 

 

 
Fig. 5 The waveform corresponding to the answer of the ANN to the first three vectors 

3. RESULTS 

The results of the implementation of the competitive ANN 
with neuron parallelism in a FPGA XC2V1000 device are 
presented in the table 1. 

The resources used in the implementation of a neuron are 
only 12 slices, 1 RAM block and one dedicated multiplier. 
The total of resources necessary to implement the competitive 

ANN with 15 neurons represents only a small percentage of 
the total resources available in the circuit, except the memory 
blocks and the dedicated multipliers which are used in 40 and 
respectively 37.5 percent. In order to implement more than 40 
neurons, the multiplying block can be implemented using 
distributed logic instead of the dedicated multipliers, their 
number being limited to 40. 

 

TABLE 1  
THE RESOURCES UTILIZED BY THE COMPETITIVE ANN WITH NEURON PARALLELISM 

 Command 
block 

Input Layer 
15 Neurons 
(res/neuron) 

Neuron outputs 
multiplexer 

Activation function TOTAL 
% of 

XC2V1000 
Slices 19 0 12 43 29 271 5,27 
Flip-flops 17 0 18 2 23 312 3,05 
RAM blocks 0 1 1 0 0 16 40 
LUTs 29 0 12 81 35 325 3,18 
Multipliers 0 0 1 0 0 15 37,5 

 
In this case, the resources per neuron increase to 22 slices, 

30 flip-flops, 1 RAM block, 31 LTUs, 0 multipliers. Also, 
such memories can be implemented using the distributed 
memory available in the device (160 Kb) instead of using the 

block RAM memories. The necessary resources increase in 
this case with 3 slices, 3 flip-flops and 3 LUTs. We can 
estimate the maximum number of competitive neurons that 
can be implemented into this device, as in the following table:

  
 
 



 
 
 

TABLE 2  
RESOURCES UTILISED BY THE MAXIMUM NUMBER OF NEURONS THAT CAN BE IMPLEMENTED IN THE XC2V1000 

 ANN 15  
Neurons, ver. 1 

ANN 40  
Neurons ver. 1 

Total 
XC2V1000 

 
Available 

ANN 15 
Neurons ver. 2 

No. of 
neurons 

TOTAL : 40 neurons, ver. 
1 + 141 neurons, ver. 2 

Slices 271 723 5120 4397 466 141 5103 
Flip-flops 312 832 10240 9408 640 221 6848 
RAM blocks 16 40 40 0 0 - 40 
LUTs 325 867 10240 9373 655 215 7024 
Multipliers 15 40 40 0 0 - 40 

 
 

From the calculations we can estimate that the maximum 
number of neurons, with the corresponding circuitry, that can 
be implemented in the device chosen is around 181. Of these, 
40 will be implemented with dedicated multipliers and 141 
using distributed logic. 

The results of the functional simulation of the implemented 
network, more precisely a detail on the first 4 test vectors and 
over the computational time intervals for the answer for the 
first test vector are presented in Fig. 6.a and respectively 6.b.

 

 

a) Detail of the first 4 vectors 

 

b) Detail on the computation times for the first test vector 

Fig. 6 Functional simulation of the competitive ANN with neuron parallelism 

 

The simulation ran with a 100MHz clock signal. The 
elements of the input vector are written in the memory of the 
input layer in a sequential manner, at equal time intervals.  

 

 Ts = (n1+1)Tclk = 80 ns    (1) 

 

The duration of the input vector is 560 ns.  

The input layer transmits in sequence these elements, plus 
the bias, to the output layer, at time intervals of Ts/(n1+1). 

Each of the n2 neurons of this layer makes (n1+1) 
computations. The transfer of the outputs to the block that 
computes the competitive function activation is done at 15 
clock intervals. The neuron that wins the competition is 
determined after 8.8 ns. The results of the simulation show 
that the first test vector from the figure [1 5 6 6 5 3 7] is 
assigned the the first class, the second vector [1 1 5 6 5 2 7] to 
the 6th class, and so on. The maximum frequency of the clock 
signal resulted from the synthesis report is 123.7 MHz. The 
maximum frequency with which the input vector elements 
can be applied is:  



 Fs max = Fclk max/(n1+1) =15,45 MHz           (2) 

4. CONCLUSIONS 

This paper presented the successful implementation of 
some simple competitive neural networks used in model 
classification tasks.  

The implemented network is of neuron parallelism type, 
having as many Euclidian computation blocks as neurons are 
within the network, and only one function activation block. 
The structure of the network modifies function of the number 
of neurons that have to be implemented. This network also 
correctly classifies all the training and test vectors supplied. 
The resources used depend on the number of neurons. In the 
case of the 15 neurons network, it utilizes: 5.27% of the total 
number of slices and 37.5% of the total number of dedicated 
multipliers. The maximum number of competitive neurons 
that can be implemented into a device such is the one 
specified above is estimated to be around 181. The maximum 
frequency at which the vectors can be applied at the input of 
the neural network is 15.45 MHz.  

The model is to be developed function of the number of 
neurons, and the size of the network should not exceed 180 
neurons for the specified circuit. 

For larger networks and higher working frequencies, lager 
FPGA devices with higher working frequencies can be used. 
For example, the XC2VP125 of the Virtex II Pro family 
contains over 556 dedicated multiplexers and over 55000 
slices, which would allow the implementation of over 2000 
competitive neurons. The working frequency of these devices 
can go as high as 400-500 MHz. The frequency of the input 
signal is 1/(n1+1) of the maximum frequency of the device, 
where n1 represent the number of neurons of the input layer 
(the number of sizes of the input vector). 

Among the author’s contributions to this chapter we can 
mention: 

• Hardware design of the Negdist block which allows 
calculating the sum of the squares of the subtraction 
operation between the elements of two vectors.

 
• The development of an algorithm used to determine 

the neuron for which the distance between the weight 
vector and the input vector is minimal.  
• Conception of the hardware model for the 

competitive function activation block. 
• Modelling of the competitive ANN with neuron 

parallelism in Simulink/System Generator. 
 
The estimation of the resources used from within the FPGA 
device and the selection of the FPGA which has the most 
suitable characteristics.  

• Finding of the maximum input signal frequency 
function of the maximum frequency of the network and 
the parameters of the network (the number of inputs and 
respectively the number of neurons). 
• Design of a block used to evaluate the errors of the 

hardware model. 
• The simulation, implementation and experimental 

verification of all the models designed using the 
hardware platform. 
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