
Hardware Implementation of Simple Competitive

Artificial Neural Networks with Neuron

Parallelism

Ştefan Oniga, Alin Tisan, Attila Buchman, Claudiu Lung

North University, Baia Mare, Electronic and Computer Engineering Department
Dr. V. Babes Street 62A, Baia Mare, 430083, Romania

Phone: (40)-(362)-401-265, Fax: (40)-(262)-276-153, onigas@ubm.ro

Abstract

Competitive self-organizing and self learning neural
networks, also known as self-organizing feature maps (SOFM),
represent one of the most interesting types of the artificial neural
networks (ANN). This paper presents the successful
implementation of some simple competitive neural networks
with neuron parallelism used in model classification tasks in
field programmable gate arrays (FPGA). The network design
was carried out using the System Generator software, which is
also used to generate the VHDL code for the network. Xilinx ISE
8.2i was used for synthesis and implementation.

1. INTRODUCTION

A competitive ANN with neuron parallelism consists of a
control block, an input layer and an output layer. The output
layer consists of a number of neurons equal to the number of
classes in which we would like to classify and an activation
function calculus block, common to all the neurons. The
neuron consists of a weights memory specific to each neuron
and a calculus block used to calculate the simplified Euclidian
distance. The following figure presents a competitive ANN
with neuron parallelism, having the same parameters as the
ANN implemented with the layer parallelism. (7 neurons in
the input layer and 15 neurons in the output layer).

1

Neuron
castigator

Data in

Ad. data A

Ad. data B

Date

Strat intrare

Resource
Estimator

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

In1

In2

In3

Out1

xlmux

sel
d0
d1d1
d2
d3
d4
d5
d6
d7
d8
d9
d10
d11
d12
d13
d14

Mux

Negdist

Reset

Neuron castigator

Functia de activare
competitiva

dblfpt
Date_in

Ad. data A

Ad. data B

Nr. adr. pond.

Reset

Sel

Bloc control

System
Generator

1
Data in

Fig. 1 The hardware model of the competitive ANN with neuron parallelism

2. IMPLEMENTING A COMPETITIVE ANN WITH LAYER

PARALLELISM

The changes in the structure of the ANN in order to
implement the neuron parallelism will be presented next. The
command signals are being generated by the command block
that has to be adapted function of the number of neurons. This
block generates the address where the input vector will be
entered into the input layer, the block being designed in the
form of a dual port memory. The command block generates
the address

form which the date of the input layer are read, data used
afterwards also by the weight memories from within the
structure of each neuron. It also generates reset signals and
the selection signal for the multiplexer. Adapting the
command block is easy because the parameters regarding the
number of neurons, the numbers of operations during an input
signal sample, the delays, etc., are being automatically loaded
from the Matlab IDE. The signals generated by the command
block are presented in figure 2.

Fig. 2 The signals generated by the command block Fig. 3 Input layer wave forms

The input layer has the same structure as in the case of the
ANN with layer parallelism, the only difference being the
frequency with which data is being entered and read. Fig. 3
present the waveforms corresponding to the input layer.

A neuron contains, besides the block that calculates the
Euclidian distance, a weights memory, as presented in the
next figure:

a) Block diagram b) The structure based on Xilinx blocks

Fig. 4 The neuron within the structure of a competitive ANN with neuron parallelism

In Fig. 4.b the structure of a neuron created using Xilinx

blocks is being presented. The AddSub block calculates the
differences between the data and the weights, while the
multiplication block calculates the square of these differences,

the accumulator block sums up the squares of the differences,
the results being stored temporally in the output register.

In order to calculate the smallest value and determine the
neuron which has the minimal output, a block that calculates
the competitive function activation has been implemented,
block similar to the one in Fig. 6.6. Because there is only one

such block, the neuron outputs are fed in sequence to its input
by the means of a 15 input multiplexer. The selection signal
for the multiplexer is generated by the command block.

A detailed view with the waveforms corresponding to the
first three test vectors for the competitive ANN with neuron
parallelism are presented in Fig. 5.

Fig. 5 The waveform corresponding to the answer of the ANN to the first three vectors

3. RESULTS

The results of the implementation of the competitive ANN
with neuron parallelism in a FPGA XC2V1000 device are
presented in the table 1.

The resources used in the implementation of a neuron are
only 12 slices, 1 RAM block and one dedicated multiplier.
The total of resources necessary to implement the competitive

ANN with 15 neurons represents only a small percentage of
the total resources available in the circuit, except the memory
blocks and the dedicated multipliers which are used in 40 and
respectively 37.5 percent. In order to implement more than 40
neurons, the multiplying block can be implemented using
distributed logic instead of the dedicated multipliers, their
number being limited to 40.

TABLE 1
THE RESOURCES UTILIZED BY THE COMPETITIVE ANN WITH NEURON PARALLELISM

 Command
block

Input Layer
15 Neurons
(res/neuron)

Neuron outputs
multiplexer

Activation function TOTAL
% of

XC2V1000
Slices 19 0 12 43 29 271 5,27
Flip-flops 17 0 18 2 23 312 3,05
RAM blocks 0 1 1 0 0 16 40
LUTs 29 0 12 81 35 325 3,18
Multipliers 0 0 1 0 0 15 37,5

In this case, the resources per neuron increase to 22 slices,

30 flip-flops, 1 RAM block, 31 LTUs, 0 multipliers. Also,
such memories can be implemented using the distributed
memory available in the device (160 Kb) instead of using the

block RAM memories. The necessary resources increase in
this case with 3 slices, 3 flip-flops and 3 LUTs. We can
estimate the maximum number of competitive neurons that
can be implemented into this device, as in the following table:

TABLE 2
RESOURCES UTILISED BY THE MAXIMUM NUMBER OF NEURONS THAT CAN BE IMPLEMENTED IN THE XC2V1000

 ANN 15
Neurons, ver. 1

ANN 40
Neurons ver. 1

Total
XC2V1000

Available

ANN 15
Neurons ver. 2

No. of
neurons

TOTAL : 40 neurons, ver.
1 + 141 neurons, ver. 2

Slices 271 723 5120 4397 466 141 5103
Flip-flops 312 832 10240 9408 640 221 6848
RAM blocks 16 40 40 0 0 - 40
LUTs 325 867 10240 9373 655 215 7024
Multipliers 15 40 40 0 0 - 40

From the calculations we can estimate that the maximum
number of neurons, with the corresponding circuitry, that can
be implemented in the device chosen is around 181. Of these,
40 will be implemented with dedicated multipliers and 141
using distributed logic.

The results of the functional simulation of the implemented
network, more precisely a detail on the first 4 test vectors and
over the computational time intervals for the answer for the
first test vector are presented in Fig. 6.a and respectively 6.b.

a) Detail of the first 4 vectors

b) Detail on the computation times for the first test vector

Fig. 6 Functional simulation of the competitive ANN with neuron parallelism

The simulation ran with a 100MHz clock signal. The
elements of the input vector are written in the memory of the
input layer in a sequential manner, at equal time intervals.

 Ts = (n1+1)Tclk = 80 ns (1)

The duration of the input vector is 560 ns.

The input layer transmits in sequence these elements, plus
the bias, to the output layer, at time intervals of Ts/(n1+1).

Each of the n2 neurons of this layer makes (n1+1)
computations. The transfer of the outputs to the block that
computes the competitive function activation is done at 15
clock intervals. The neuron that wins the competition is
determined after 8.8 ns. The results of the simulation show
that the first test vector from the figure [1 5 6 6 5 3 7] is
assigned the the first class, the second vector [1 1 5 6 5 2 7] to
the 6th class, and so on. The maximum frequency of the clock
signal resulted from the synthesis report is 123.7 MHz. The
maximum frequency with which the input vector elements
can be applied is:

 Fs max = Fclk max/(n1+1) =15,45 MHz (2)

4. CONCLUSIONS

This paper presented the successful implementation of
some simple competitive neural networks used in model
classification tasks.

The implemented network is of neuron parallelism type,
having as many Euclidian computation blocks as neurons are
within the network, and only one function activation block.
The structure of the network modifies function of the number
of neurons that have to be implemented. This network also
correctly classifies all the training and test vectors supplied.
The resources used depend on the number of neurons. In the
case of the 15 neurons network, it utilizes: 5.27% of the total
number of slices and 37.5% of the total number of dedicated
multipliers. The maximum number of competitive neurons
that can be implemented into a device such is the one
specified above is estimated to be around 181. The maximum
frequency at which the vectors can be applied at the input of
the neural network is 15.45 MHz.

The model is to be developed function of the number of
neurons, and the size of the network should not exceed 180
neurons for the specified circuit.

For larger networks and higher working frequencies, lager
FPGA devices with higher working frequencies can be used.
For example, the XC2VP125 of the Virtex II Pro family
contains over 556 dedicated multiplexers and over 55000
slices, which would allow the implementation of over 2000
competitive neurons. The working frequency of these devices
can go as high as 400-500 MHz. The frequency of the input
signal is 1/(n1+1) of the maximum frequency of the device,
where n1 represent the number of neurons of the input layer
(the number of sizes of the input vector).

Among the author’s contributions to this chapter we can
mention:

• Hardware design of the Negdist block which allows
calculating the sum of the squares of the subtraction
operation between the elements of two vectors.

• The development of an algorithm used to determine

the neuron for which the distance between the weight
vector and the input vector is minimal.
• Conception of the hardware model for the

competitive function activation block.
• Modelling of the competitive ANN with neuron

parallelism in Simulink/System Generator.

The estimation of the resources used from within the FPGA
device and the selection of the FPGA which has the most
suitable characteristics.

• Finding of the maximum input signal frequency
function of the maximum frequency of the network and
the parameters of the network (the number of inputs and
respectively the number of neurons).
• Design of a block used to evaluate the errors of the

hardware model.
• The simulation, implementation and experimental

verification of all the models designed using the
hardware platform.

REFERENCES

[1] J. Starzyk, Y. Guo. “A Self-Organizing Learning Array and its
Hardware-Software Co-Simulation”, Proc. ECCTD, Krakow, Poland,
2003

[2] T. Kohonen. Self-Organizing Maps. Third Edition. Springer-Verlag
Berlin, 2001

[3] S. Oniga, “A New Method for FPGA Implementation of Artificial
Neural Network Used in Smart Devices”, International Computer
Science Conference microCAD 2005, Miskolc, Hungary, March 2005,
pp. 31-36

[4] A. Tisan, S. Oniga, A. Buchman, C. Gavrincea, Architecture and
Algorithms for Syntetizable Neural Networks with On-Chip Learning,
International Symposium on Signals, Circuits and Systems, ISSCS
2007, July 12-13, 2007, Iasi, Romania, vol.1, p. 265 - 268, ISBN 1-
4244-0968-3, IEEE Catalog Number: 07EX1678, Library of Congress:
2007920356

[5] S. Oniga, A. Tisan, D. Mic, A. Buchman, A. Vida-Ratiu, Hand Postures
Recognition System Using Artificial Neural Networks Implemented in
FPGA, 30th International Spring Seminar on Electronics Technology,
ISSE 2007. Technical University of Cluj-Napoca, ROMANIA, May 9-
13, 2007, p. 507 - 512, ISBN 1-4244-1218-8, IEEE Catalog Number:
07EX1780C, Library of Congress: 2007924573

